Стационарность

Стационарностьcвойство вероятностного процесса оставаться неизменным во времени.

Пусть (Ω, F, P)–вероятностное пространство и ξ = (ξ1, ξ2, …) – некоторая последовательность случайных величин, или случайная последовательность. Обозначим через θkξ последовательность (ξk+1, ξk+2, …).

Случайная последовательность ξ называется стационарной (в узком смысле), если для ∀k ≥ 1 распределение вероятностей θkξ и ξ: P ((ξ1, ξ2, …) ∈ B) = P ((ξk+1, ξk+2, …) ∈ B), B ∈ B(R∞), г де B(R∞) – борелевская σ-алгебра.

Стационарность случайного процесса означает неизменность во времени его вероятностных закономерностей, при этом обычно рассматривается два вида стационарности: стационарность в узком смысле, когда конечномерные распределения инвариантны относительно сдвига времени, и стационарность в широком смысле, когда от времени не зависят лишь математические ожидания. Практическое применение стационарности основывается на том, что для стационарного процесса характеристики любой случайной выборки и генеральной совокупности совпадают. На практике чаще используют предположение о стационарности в широком смысле.

Читайте также:  Стратегическое планирование
Оцените статью
Financial-Helper.RU
Добавить комментарий